2.1. The risk as a selection criterion for already fitted models#
\(\require{mathtools} \newcommand{\notag}{} \newcommand{\tag}{} \newcommand{\label}[1]{} \newcommand{\sfrac}[2]{#1/#2} \newcommand{\bm}[1]{\boldsymbol{#1}} \newcommand{\num}[1]{#1} \newcommand{\qty}[2]{#1\,#2} \renewenvironment{align} {\begin{aligned}} {\end{aligned}} \renewenvironment{alignat} {\begin{alignedat}} {\end{alignedat}} \newcommand{\pdfmspace}[1]{} % Ignore PDF-only spacing commands \newcommand{\htmlmspace}[1]{\mspace{#1}} % Ignore PDF-only spacing commands \newcommand{\scaleto}[2]{#1} % Allow to use scaleto from scalerel package \newcommand{\RR}{\mathbb R} \newcommand{\NN}{\mathbb N} \newcommand{\PP}{\mathbb P} \newcommand{\EE}{\mathbb E} \newcommand{\XX}{\mathbb X} \newcommand{\ZZ}{\mathbb Z} \newcommand{\QQ}{\mathbb Q} \newcommand{\fF}{\mathcal F} \newcommand{\dD}{\mathcal D} \newcommand{\lL}{\mathcal L} \newcommand{\gG}{\mathcal G} \newcommand{\hH}{\mathcal H} \newcommand{\nN}{\mathcal N} \newcommand{\pP}{\mathcal P} \newcommand{\BB}{\mathbb B} \newcommand{\Exp}{\operatorname{Exp}} \newcommand{\Binomial}{\operatorname{Binomial}} \newcommand{\Poisson}{\operatorname{Poisson}} \newcommand{\linop}{\mathcal{L}(\mathbb{B})} \newcommand{\linopell}{\mathcal{L}(\ell_1)} \DeclareMathOperator{\trace}{trace} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Span}{span} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\col}{col} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\gt}{>} \definecolor{highlight-blue}{RGB}{0,123,255} % definition, theorem, proposition \definecolor{highlight-yellow}{RGB}{255,193,7} % lemma, conjecture, example \definecolor{highlight-orange}{RGB}{253,126,20} % criterion, corollary, property \definecolor{highlight-red}{RGB}{220,53,69} % criterion \newcommand{\logL}{\ell} \newcommand{\eE}{\mathcal{E}} \newcommand{\oO}{\mathcal{O}} \newcommand{\defeq}{\stackrel{\mathrm{def}}{=}} \newcommand{\Bspec}{\mathcal{B}} % Spectral radiance \newcommand{\X}{\mathcal{X}} % X space \newcommand{\Y}{\mathcal{Y}} % Y space \newcommand{\M}{\mathcal{M}} % Model \newcommand{\Tspace}{\mathcal{T}} \newcommand{\Vspace}{\mathcal{V}} \newcommand{\Mtrue}{\mathcal{M}_{\mathrm{true}}} \newcommand{\MP}{\M_{\mathrm{P}}} \newcommand{\MRJ}{\M_{\mathrm{RJ}}} \newcommand{\qproc}{\mathfrak{Q}} \newcommand{\D}{\mathcal{D}} % Data (true or generic) \newcommand{\Dt}{\tilde{\mathcal{D}}} \newcommand{\Phit}{\widetilde{\Phi}} \newcommand{\Phis}{\Phi^*} \newcommand{\qt}{\tilde{q}} \newcommand{\qs}{q^*} \newcommand{\qh}{\hat{q}} \newcommand{\AB}[1]{\mathtt{AB}~\mathtt{#1}} \newcommand{\LP}[1]{\mathtt{LP}~\mathtt{#1}} \newcommand{\NML}{\mathrm{NML}} \newcommand{\iI}{\mathcal{I}} \newcommand{\true}{\mathrm{true}} \newcommand{\dist}{D} \newcommand{\Mtheo}[1]{\mathcal{M}_{#1}} % Model (theoretical model); index: param set \newcommand{\DL}[1][L]{\mathcal{D}^{(#1)}} % Data (RV or generic) \newcommand{\DLp}[1][L]{\mathcal{D}^{(#1')}} % Data (RV or generic) \newcommand{\DtL}[1][L]{\tilde{\mathcal{D}}^{(#1)}} % Data (RV or generic) \newcommand{\DpL}[1][L]{{\mathcal{D}'}^{(#1)}} % Data (RV or generic) \newcommand{\Dobs}[1][]{\mathcal{D}_{\mathrm{obs}}^{#1}} % Data (observed) \newcommand{\calibset}{\mathcal{C}} \newcommand{\N}{\mathcal{N}} % Normal distribution \newcommand{\Z}{\mathcal{Z}} % Partition function \newcommand{\VV}{\mathbb{V}} % Variance \newcommand{\T}{\mathsf{T}} % Transpose \newcommand{\EMD}{\mathrm{EMD}} \newcommand{\dEMD}{d_{\mathrm{EMD}}} \newcommand{\dEMDtilde}{\tilde{d}_{\mathrm{EMD}}} \newcommand{\dEMDsafe}{d_{\mathrm{EMD}}^{\text{(safe)}}} \newcommand{\e}{ε} % Model confusion threshold \newcommand{\falsifythreshold}{ε} \newcommand{\bayes}[1][]{B_{#1}} \newcommand{\bayesthresh}[1][]{B_{0}} \newcommand{\bayesm}[1][]{B^{\mathcal{M}}_{#1}} \newcommand{\bayesl}[1][]{B^l_{#1}} \newcommand{\bayesphys}[1][]{B^{{p}}_{#1}} \newcommand{\Bconf}[1]{B^{\mathrm{epis}}_{#1}} \newcommand{\Bemd}[1]{B^{\mathrm{EMD}}_{#1}} \newcommand{\BQ}[1]{B^{Q}_{#1}} \newcommand{\Bconfbin}[1][]{\bar{B}^{\mathrm{conf}}_{#1}} \newcommand{\Bemdbin}[1][]{\bar{B}_{#1}^{\mathrm{EMD}}} \newcommand{\bin}{\mathcal{B}} \newcommand{\Bconft}[1][]{\tilde{B}^{\mathrm{conf}}_{#1}} \newcommand{\fc}{f_c} \newcommand{\fcbin}{\bar{f}_c} \newcommand{\paramphys}[1][]{Θ^{{p}}_{#1}} \newcommand{\paramobs}[1][]{Θ^{ε}_{#1}} \newcommand{\test}{\mathrm{test}} \newcommand{\train}{\mathrm{train}} \newcommand{\synth}{\mathrm{synth}} \newcommand{\rep}{\mathrm{rep}} \newcommand{\MNtrue}{\mathcal{M}^{{p}}_{\text{true}}} \newcommand{\MN}[1][]{\mathcal{M}^{{p}}_{#1}} \newcommand{\MNA}{\mathcal{M}^{{p}}_{Θ_A}} \newcommand{\MNB}{\mathcal{M}^{{p}}_{Θ_B}} \newcommand{\Me}[1][]{\mathcal{M}^ε_{#1}} \newcommand{\Metrue}{\mathcal{M}^ε_{\text{true}}} \newcommand{\Meobs}{\mathcal{M}^ε_{\text{obs}}} \newcommand{\Meh}[1][]{\hat{\mathcal{M}}^ε_{#1}} \newcommand{\MNa}{\mathcal{M}^{\mathcal{N}}_a} \newcommand{\MeA}{\mathcal{M}^ε_A} \newcommand{\MeB}{\mathcal{M}^ε_B} \newcommand{\Ms}{\mathcal{M}^*} \newcommand{\MsA}{\mathcal{M}^*_A} \newcommand{\MsB}{\mathcal{M}^*_B} \newcommand{\Msa}{\mathcal{M}^*_a} \newcommand{\MsAz}{\mathcal{M}^*_{A,z}} \newcommand{\MsBz}{\mathcal{M}^*_{B,z}} \newcommand{\Msaz}{\mathcal{M}^*_{a,z}} \newcommand{\MeAz}{\mathcal{M}^ε_{A,z}} \newcommand{\MeBz}{\mathcal{M}^ε_{B,z}} \newcommand{\Meaz}{\mathcal{M}^ε_{a,z}} \newcommand{\zo}{z^{0}} \renewcommand{\lL}[2][]{\mathcal{L}_{#1|{#2}}} % likelihood \newcommand{\Lavg}[2][]{\mathcal{L}^{/#2}_{#1}} % Geometric average of likelihood \newcommand{\lLphys}[2][]{\mathcal{L}^{{p}}_{#1|#2}} \newcommand{\Lavgphys}[2][]{\mathcal{L}^{{p}/#2}_{#1}} % Geometric average of likelihood \newcommand{\lLL}[3][]{\mathcal{L}^{(#3)}_{#1|#2}} \newcommand{\lLphysL}[3][]{\mathcal{L}^{{p},(#3)}_{#1|#2}} \newcommand{\lnL}[2][]{l_{#1|#2}} % Per-sample log likelihood \newcommand{\lnLt}[2][]{\widetilde{l}_{#1|#2}} \newcommand{\lnLtt}{\widetilde{l}} % Used only in path_sampling \newcommand{\lnLh}[1][]{\hat{l}_{#1}} \newcommand{\lnLphys}[2][]{l^{{p}}_{#1|#2}} \newcommand{\lnLphysL}[3][]{l^{{p},(#3)}_{#1|#2}} \newcommand{\Elmu}[2][1]{μ_{{#2}}^{(#1)}} \newcommand{\Elmuh}[2][1]{\hat{μ}_{{#2}}^{(#1)}} \newcommand{\Elsig}[2][1]{Σ_{{#2}}^{(#1)}} \newcommand{\Elsigh}[2][1]{\hat{Σ}_{{#2}}^{(#1)}} \newcommand{\pathP}{\mathop{{p}}} % Path-sampling process (generic) \newcommand{\pathPhb}{\mathop{{p}}_{\mathrm{Beta}}} % Path-sampling process (hierarchical beta) \newcommand{\interval}{\mathcal{I}} \newcommand{\Phiset}[1]{\{\Phi\}^{\small (#1)}} \newcommand{\Phipart}[1]{\{\mathcal{I}_Φ\}^{\small (#1)}} \newcommand{\qhset}[1]{\{\qh\}^{\small (#1)}} \newcommand{\Dqpart}[1]{\{Δ\qh_{2^{#1}}\}} \newcommand{\LsAzl}{\mathcal{L}_{\smash{{}^{\,*}_A},z,L}} \newcommand{\LsBzl}{\mathcal{L}_{\smash{{}^{\,*}_B},z,L}} \newcommand{\lsA}{l_{\smash{{}^{\,*}_A}}} \newcommand{\lsB}{l_{\smash{{}^{\,*}_B}}} \newcommand{\lsAz}{l_{\smash{{}^{\,*}_A},z}} \newcommand{\lsAzj}{l_{\smash{{}^{\,*}_A},z_j}} \newcommand{\lsAzo}{l_{\smash{{}^{\,*}_A},z^0}} \newcommand{\leAz}{l_{\smash{{}^{\,ε}_A},z}} \newcommand{\lsAez}{l_{\smash{{}^{*ε}_A},z}} \newcommand{\lsBz}{l_{\smash{{}^{\,*}_B},z}} \newcommand{\lsBzj}{l_{\smash{{}^{\,*}_B},z_j}} \newcommand{\lsBzo}{l_{\smash{{}^{\,*}_B},z^0}} \newcommand{\leBz}{l_{\smash{{}^{\,ε}_B},z}} \newcommand{\lsBez}{l_{\smash{{}^{*ε}_B},z}} \newcommand{\LaszL}{\mathcal{L}_{\smash{{}^{*}_a},z,L}} \newcommand{\lasz}{l_{\smash{{}^{*}_a},z}} \newcommand{\laszj}{l_{\smash{{}^{*}_a},z_j}} \newcommand{\laszo}{l_{\smash{{}^{*}_a},z^0}} \newcommand{\laez}{l_{\smash{{}^{ε}_a},z}} \newcommand{\lasez}{l_{\smash{{}^{*ε}_a},z}} \newcommand{\lhatasz}{\hat{l}_{\smash{{}^{*}_a},z}} \newcommand{\pasz}{p_{\smash{{}^{*}_a},z}} \newcommand{\paez}{p_{\smash{{}^{ε}_a},z}} \newcommand{\pasez}{p_{\smash{{}^{*ε}_a},z}} \newcommand{\phatsaz}{\hat{p}_{\smash{{}^{*}_a},z}} \newcommand{\phateaz}{\hat{p}_{\smash{{}^{ε}_a},z}} \newcommand{\phatseaz}{\hat{p}_{\smash{{}^{*ε}_a},z}} \newcommand{\Phil}[2][]{Φ_{#1|#2}} % Φ_{\la} \newcommand{\Philt}[2][]{\widetilde{Φ}_{#1|#2}} % Φ_{\la} \newcommand{\Philhat}[2][]{\hat{Φ}_{#1|#2}} % Φ_{\la} \newcommand{\Philsaz}{Φ_{\smash{{}^{*}_a},z}} % Φ_{\lasz} \newcommand{\Phileaz}{Φ_{\smash{{}^{ε}_a},z}} % Φ_{\laez} \newcommand{\Philseaz}{Φ_{\smash{{}^{*ε}_a},z}} % Φ_{\lasez} \newcommand{\mus}[1][1]{μ^{(#1)}_*} \newcommand{\musA}[1][1]{μ^{(#1)}_{\smash{{}^{\,*}_A}}} \newcommand{\SigsA}[1][1]{Σ^{(#1)}_{\smash{{}^{\,*}_A}}} \newcommand{\musB}[1][1]{μ^{(#1)}_{\smash{{}^{\,*}_B}}} \newcommand{\SigsB}[1][1]{Σ^{(#1)}_{\smash{{}^{\,*}_B}}} \newcommand{\musa}[1][1]{μ^{(#1)}_{\smash{{}^{*}_a}}} \newcommand{\Sigsa}[1][1]{Σ^{(#1)}_{\smash{{}^{*}_a}}} \newcommand{\Msah}{{\color{highlight-red}\mathcal{M}^{*}_a}} \newcommand{\Msazh}{{\color{highlight-red}\mathcal{M}^{*}_{a,z}}} \newcommand{\Meah}{{\color{highlight-blue}\mathcal{M}^{ε}_a}} \newcommand{\Meazh}{{\color{highlight-blue}\mathcal{M}^{ε}_{a,z}}} \newcommand{\lsazh}{{\color{highlight-red}l_{\smash{{}^{*}_a},z}}} \newcommand{\leazh}{{\color{highlight-blue}l_{\smash{{}^{ε}_a},z}}} \newcommand{\lseazh}{{\color{highlight-orange}l_{\smash{{}^{*ε}_a},z}}} \newcommand{\Philsazh}{{\color{highlight-red}Φ_{\smash{{}^{*}_a},z}}} % Φ_{\lasz} \newcommand{\Phileazh}{{\color{highlight-blue}Φ_{\smash{{}^{ε}_a},z}}} % Φ_{\laez} \newcommand{\Philseazh}{{\color{highlight-orange}Φ_{\smash{{}^{*ε}_a},z}}} % Φ_{\lasez} \newcommand{\emdstd}{\tilde{σ}} \DeclareMathOperator{\Mvar}{Mvar} \DeclareMathOperator{\AIC}{AIC} \DeclareMathOperator{\epll}{epll} \DeclareMathOperator{\elpd}{elpd} \DeclareMathOperator{\MDL}{MDL} \DeclareMathOperator{\comp}{COMP} \DeclareMathOperator{\Lognorm}{Lognorm} \DeclareMathOperator{\erf}{erf} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator{\Image}{Image} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\SE}{SE} % standard error \DeclareMathOperator{\Unif}{Unif} \DeclareMathOperator{\Poisson}{Poisson} \DeclareMathOperator{\SkewNormal}{SkewNormal} \DeclareMathOperator{\TruncNormal}{TruncNormal} \DeclareMathOperator{\Exponential}{Exponential} \DeclareMathOperator{\exGaussian}{exGaussian} \DeclareMathOperator{\IG}{IG} \DeclareMathOperator{\NIG}{NIG} \DeclareMathOperator{\Gammadist}{Gamma} \DeclareMathOperator{\Lognormal}{Lognormal} \DeclareMathOperator{\Beta}{Beta} \newcommand{\sinf}{{s_{\infty}}}\)
As set out in the Introduction, we start from the assumption that models of the natural phenomenon of interest have already been fitted to data; this anterior step is indicated by the grey faded rectangle in Fig. 1.1. The manner in which this is done is not important; model parameters for example could result from maximizing the likelihood, running a genetic algorithm or performing Bayesian inference.
Our starting points are the true data-generating process \(\Mtrue\) and the pointwise loss \(Q\). The loss depends on the model \(\M_A\), evaluates on individual data samples \((x_i, y_i)\) and returns a real number:
Often, but not always, the negative log likelihood is chosen as the loss. What we seek to estimate is the risk, i.e. the expectation of \(Q\):
we use the notation \((x_i, y_i)\sim\Mtrue\) to indicate that the samples \((x_i, y_i)\) are drawn from \(\Mtrue\). For simplicity, our notation assumes that model parameters are point estimates. For Bayesian models, one can adapt the definition of the loss \(Q\) to include an expectation over the posterior; Eq. 2.2 would then become the Bayes risk. Our methodology is agnostic to the precise definition of \(Q\), as long as it is evaluated pointwise; it can differ from the objective used to fit the models.
The risk describes the expected performance of a model on replicates of the dataset, when each replicate is drawn from the same data-generating process \(\Mtrue\). It is therefore a natural basis for comparing models based on their ability to generalise. It is also the gold standard objective for a machine learning algorithm [24, 26], for the same reason, and has been used in classical statistics to analyse model selection under misspecification [27]. In practice we usually estimate \(R_A\) from finite samples with the empirical risk:
For the types of problems we are interested in, it is safe to assume that \(\hat{R}_A\) converges to \(R_A\) in probability.
A common consideration with model selection criteria is whether they are consistent, i.e. whether they eventually select the true model when the number of samples grows. When models are misspecified, none of the candidates are actually the true model, so the definition of consistency is often generalised to mean convergence to the “pseudo-true” model: the one with the smallest Kullback-Leibler divergence \(D_{\mathrm{KL}}\) from the true model [28, 29]. If consistency in this sense is desired, then using the log likelihood for \(Q\) is recommended, since for a fixed true model, minimizing the \(D_{\mathrm{KL}}\) is equivalent to minimizing the log likelihood. The log likelihood is also known to be proper [30, 31, Chap. 7.1 of 32]; a selection rule which minimizes the log likelihood is thus also consistent in the original sense of asymptotically selecting the true model when it is among the candidates.
The statistical learning literature instead defines a “learning machine” as consistent if it asymptotically minimizes the true risk \(R\) when trained with the empirical risk \(\hat{R}_A\) [24, 26]. As long as we have a finite number of candidate models, our procedure will satisfy this notion of consistency.
Convergence to \(R_A\) also means that the result of a risk-based criterion is insensitive to the size of the dataset, provided we have enough data to estimate the risk of each model accurately. This is especially useful in the scientific context, where we want to select models which can be used on datasets of any size.
In addition to defining a consistent, size-insensitive criterion, risk also has the important practical advantage that it remains informative when the models are structurally identical. We contrast this with the marginal likelihood (also known as the model evidence), which for some dataset \(\D\), model \(\M_A\) parametrised by \(θ\), and prior \(π_A\), would be written
Since it is integrated over the entire parameter space, \(\eE_A\) characterizes the family of models \(\M_A(\cdot)\), but says nothing of a specific parametrisation \(\M_A(θ)\). We include a comparison of our proposed EMD rejection rule to other common selection criteria, including the model evidence, at the end of our Results.
A criterion based on risk however will not account for a model which overfits the data, which is why it is important to use separate datasets for fitting and comparing models. This in any case better reflects the usual scientific paradigm of recording data, forming a hypothesis, and then recording new data (either in the same laboratory or a different one) to test that hypothesis. Splitting data into training and test sets is also the standard practice in machine learning to avoid overfitting and ensure better generalisation. In the following therefore we will always denote the observation data as \(\D_\test\) to stress that they should be independent from the data to which the models were fitted.
In short, the EMD rejection rule we develop in the following sections ranks models based on their empirical risk Eq. 2.3, augmented with an uncertainty represented as a risk-distribution. Comparisons based on the risk are consistent and insensitive to the number of test samples, but require a separate test dataset to avoid overfitting.