Supplementary Methods

5. Supplementary Methods#

\(\require{mathtools} \newcommand{\notag}{} \newcommand{\tag}{} \newcommand{\label}[1]{} \newcommand{\sfrac}[2]{#1/#2} \newcommand{\bm}[1]{\boldsymbol{#1}} \newcommand{\num}[1]{#1} \newcommand{\qty}[2]{#1\,#2} \renewenvironment{align} {\begin{aligned}} {\end{aligned}} \renewenvironment{alignat} {\begin{alignedat}} {\end{alignedat}} \newcommand{\pdfmspace}[1]{} % Ignore PDF-only spacing commands \newcommand{\htmlmspace}[1]{\mspace{#1}} % Ignore PDF-only spacing commands \newcommand{\scaleto}[2]{#1} % Allow to use scaleto from scalerel package \newcommand{\RR}{\mathbb R} \newcommand{\NN}{\mathbb N} \newcommand{\PP}{\mathbb P} \newcommand{\EE}{\mathbb E} \newcommand{\XX}{\mathbb X} \newcommand{\ZZ}{\mathbb Z} \newcommand{\QQ}{\mathbb Q} \newcommand{\fF}{\mathcal F} \newcommand{\dD}{\mathcal D} \newcommand{\lL}{\mathcal L} \newcommand{\gG}{\mathcal G} \newcommand{\hH}{\mathcal H} \newcommand{\nN}{\mathcal N} \newcommand{\pP}{\mathcal P} \newcommand{\BB}{\mathbb B} \newcommand{\Exp}{\operatorname{Exp}} \newcommand{\Binomial}{\operatorname{Binomial}} \newcommand{\Poisson}{\operatorname{Poisson}} \newcommand{\linop}{\mathcal{L}(\mathbb{B})} \newcommand{\linopell}{\mathcal{L}(\ell_1)} \DeclareMathOperator{\trace}{trace} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Span}{span} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\col}{col} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\gt}{>} \definecolor{highlight-blue}{RGB}{0,123,255} % definition, theorem, proposition \definecolor{highlight-yellow}{RGB}{255,193,7} % lemma, conjecture, example \definecolor{highlight-orange}{RGB}{253,126,20} % criterion, corollary, property \definecolor{highlight-red}{RGB}{220,53,69} % criterion \newcommand{\logL}{\ell} \newcommand{\eE}{\mathcal{E}} \newcommand{\oO}{\mathcal{O}} \newcommand{\defeq}{\stackrel{\mathrm{def}}{=}} \newcommand{\Bspec}{\mathcal{B}} % Spectral radiance \newcommand{\X}{\mathcal{X}} % X space \newcommand{\Y}{\mathcal{Y}} % Y space \newcommand{\M}{\mathcal{M}} % Model \newcommand{\Tspace}{\mathcal{T}} \newcommand{\Vspace}{\mathcal{V}} \newcommand{\Mtrue}{\mathcal{M}_{\mathrm{true}}} \newcommand{\MP}{\M_{\mathrm{P}}} \newcommand{\MRJ}{\M_{\mathrm{RJ}}} \newcommand{\qproc}{\mathfrak{Q}} \newcommand{\D}{\mathcal{D}} % Data (true or generic) \newcommand{\Dt}{\tilde{\mathcal{D}}} \newcommand{\Phit}{\widetilde{\Phi}} \newcommand{\Phis}{\Phi^*} \newcommand{\qt}{\tilde{q}} \newcommand{\qs}{q^*} \newcommand{\qh}{\hat{q}} \newcommand{\AB}[1]{\mathtt{AB}~\mathtt{#1}} \newcommand{\LP}[1]{\mathtt{LP}~\mathtt{#1}} \newcommand{\NML}{\mathrm{NML}} \newcommand{\iI}{\mathcal{I}} \newcommand{\true}{\mathrm{true}} \newcommand{\dist}{D} \newcommand{\Mtheo}[1]{\mathcal{M}_{#1}} % Model (theoretical model); index: param set \newcommand{\DL}[1][L]{\mathcal{D}^{(#1)}} % Data (RV or generic) \newcommand{\DLp}[1][L]{\mathcal{D}^{(#1')}} % Data (RV or generic) \newcommand{\DtL}[1][L]{\tilde{\mathcal{D}}^{(#1)}} % Data (RV or generic) \newcommand{\DpL}[1][L]{{\mathcal{D}'}^{(#1)}} % Data (RV or generic) \newcommand{\Dobs}[1][]{\mathcal{D}_{\mathrm{obs}}^{#1}} % Data (observed) \newcommand{\calibset}{\mathcal{C}} \newcommand{\N}{\mathcal{N}} % Normal distribution \newcommand{\Z}{\mathcal{Z}} % Partition function \newcommand{\VV}{\mathbb{V}} % Variance \newcommand{\T}{\mathsf{T}} % Transpose \newcommand{\EMD}{\mathrm{EMD}} \newcommand{\dEMD}{d_{\mathrm{EMD}}} \newcommand{\dEMDtilde}{\tilde{d}_{\mathrm{EMD}}} \newcommand{\dEMDsafe}{d_{\mathrm{EMD}}^{\text{(safe)}}} \newcommand{\e}{ε} % Model confusion threshold \newcommand{\falsifythreshold}{ε} \newcommand{\bayes}[1][]{B_{#1}} \newcommand{\bayesthresh}[1][]{B_{0}} \newcommand{\bayesm}[1][]{B^{\mathcal{M}}_{#1}} \newcommand{\bayesl}[1][]{B^l_{#1}} \newcommand{\bayesphys}[1][]{B^{{p}}_{#1}} \newcommand{\Bconf}[1]{B^{\mathrm{epis}}_{#1}} \newcommand{\Bemd}[1]{B^{\mathrm{EMD}}_{#1}} \newcommand{\Bconfbin}[1][]{\bar{B}^{\mathrm{conf}}_{#1}} \newcommand{\Bemdbin}[1][]{\bar{B}_{#1}^{\mathrm{EMD}}} \newcommand{\bin}{\mathcal{B}} \newcommand{\Bconft}[1][]{\tilde{B}^{\mathrm{conf}}_{#1}} \newcommand{\fc}{f_c} \newcommand{\fcbin}{\bar{f}_c} \newcommand{\paramphys}[1][]{Θ^{{p}}_{#1}} \newcommand{\paramobs}[1][]{Θ^{ε}_{#1}} \newcommand{\test}{\mathrm{test}} \newcommand{\train}{\mathrm{train}} \newcommand{\synth}{\mathrm{synth}} \newcommand{\rep}{\mathrm{rep}} \newcommand{\MNtrue}{\mathcal{M}^{{p}}_{\text{true}}} \newcommand{\MN}[1][]{\mathcal{M}^{{p}}_{#1}} \newcommand{\MNA}{\mathcal{M}^{{p}}_{Θ_A}} \newcommand{\MNB}{\mathcal{M}^{{p}}_{Θ_B}} \newcommand{\Me}[1][]{\mathcal{M}^ε_{#1}} \newcommand{\Metrue}{\mathcal{M}^ε_{\text{true}}} \newcommand{\Meobs}{\mathcal{M}^ε_{\text{obs}}} \newcommand{\Meh}[1][]{\hat{\mathcal{M}}^ε_{#1}} \newcommand{\MNa}{\mathcal{M}^{\mathcal{N}}_a} \newcommand{\MeA}{\mathcal{M}^ε_A} \newcommand{\MeB}{\mathcal{M}^ε_B} \newcommand{\Ms}{\mathcal{M}^*} \newcommand{\MsA}{\mathcal{M}^*_A} \newcommand{\MsB}{\mathcal{M}^*_B} \newcommand{\Msa}{\mathcal{M}^*_a} \newcommand{\MsAz}{\mathcal{M}^*_{A,z}} \newcommand{\MsBz}{\mathcal{M}^*_{B,z}} \newcommand{\Msaz}{\mathcal{M}^*_{a,z}} \newcommand{\MeAz}{\mathcal{M}^ε_{A,z}} \newcommand{\MeBz}{\mathcal{M}^ε_{B,z}} \newcommand{\Meaz}{\mathcal{M}^ε_{a,z}} \newcommand{\zo}{z^{0}} \renewcommand{\lL}[2][]{\mathcal{L}_{#1|{#2}}} % likelihood \newcommand{\Lavg}[2][]{\mathcal{L}^{/#2}_{#1}} % Geometric average of likelihood \newcommand{\lLphys}[2][]{\mathcal{L}^{{p}}_{#1|#2}} \newcommand{\Lavgphys}[2][]{\mathcal{L}^{{p}/#2}_{#1}} % Geometric average of likelihood \newcommand{\lLL}[3][]{\mathcal{L}^{(#3)}_{#1|#2}} \newcommand{\lLphysL}[3][]{\mathcal{L}^{{p},(#3)}_{#1|#2}} \newcommand{\lnL}[2][]{l_{#1|#2}} % Per-sample log likelihood \newcommand{\lnLt}[2][]{\widetilde{l}_{#1|#2}} \newcommand{\lnLtt}{\widetilde{l}} % Used only in path_sampling \newcommand{\lnLh}[1][]{\hat{l}_{#1}} \newcommand{\lnLphys}[2][]{l^{{p}}_{#1|#2}} \newcommand{\lnLphysL}[3][]{l^{{p},(#3)}_{#1|#2}} \newcommand{\Elmu}[2][1]{μ_{{#2}}^{(#1)}} \newcommand{\Elmuh}[2][1]{\hat{μ}_{{#2}}^{(#1)}} \newcommand{\Elsig}[2][1]{Σ_{{#2}}^{(#1)}} \newcommand{\Elsigh}[2][1]{\hat{Σ}_{{#2}}^{(#1)}} \newcommand{\pathP}{\mathop{{p}}} % Path-sampling process (generic) \newcommand{\pathPhb}{\mathop{{p}}_{\mathrm{Beta}}} % Path-sampling process (hierarchical beta) \newcommand{\interval}{\mathcal{I}} \newcommand{\Phiset}[1]{\{\Phi\}^{\small (#1)}} \newcommand{\Phipart}[1]{\{\mathcal{I}_Φ\}^{\small (#1)}} \newcommand{\qhset}[1]{\{\qh\}^{\small (#1)}} \newcommand{\Dqpart}[1]{\{Δ\qh_{2^{#1}}\}} \newcommand{\LsAzl}{\mathcal{L}_{\smash{{}^{\,*}_A},z,L}} \newcommand{\LsBzl}{\mathcal{L}_{\smash{{}^{\,*}_B},z,L}} \newcommand{\lsA}{l_{\smash{{}^{\,*}_A}}} \newcommand{\lsB}{l_{\smash{{}^{\,*}_B}}} \newcommand{\lsAz}{l_{\smash{{}^{\,*}_A},z}} \newcommand{\lsAzj}{l_{\smash{{}^{\,*}_A},z_j}} \newcommand{\lsAzo}{l_{\smash{{}^{\,*}_A},z^0}} \newcommand{\leAz}{l_{\smash{{}^{\,ε}_A},z}} \newcommand{\lsAez}{l_{\smash{{}^{*ε}_A},z}} \newcommand{\lsBz}{l_{\smash{{}^{\,*}_B},z}} \newcommand{\lsBzj}{l_{\smash{{}^{\,*}_B},z_j}} \newcommand{\lsBzo}{l_{\smash{{}^{\,*}_B},z^0}} \newcommand{\leBz}{l_{\smash{{}^{\,ε}_B},z}} \newcommand{\lsBez}{l_{\smash{{}^{*ε}_B},z}} \newcommand{\LaszL}{\mathcal{L}_{\smash{{}^{*}_a},z,L}} \newcommand{\lasz}{l_{\smash{{}^{*}_a},z}} \newcommand{\laszj}{l_{\smash{{}^{*}_a},z_j}} \newcommand{\laszo}{l_{\smash{{}^{*}_a},z^0}} \newcommand{\laez}{l_{\smash{{}^{ε}_a},z}} \newcommand{\lasez}{l_{\smash{{}^{*ε}_a},z}} \newcommand{\lhatasz}{\hat{l}_{\smash{{}^{*}_a},z}} \newcommand{\pasz}{p_{\smash{{}^{*}_a},z}} \newcommand{\paez}{p_{\smash{{}^{ε}_a},z}} \newcommand{\pasez}{p_{\smash{{}^{*ε}_a},z}} \newcommand{\phatsaz}{\hat{p}_{\smash{{}^{*}_a},z}} \newcommand{\phateaz}{\hat{p}_{\smash{{}^{ε}_a},z}} \newcommand{\phatseaz}{\hat{p}_{\smash{{}^{*ε}_a},z}} \newcommand{\Phil}[2][]{Φ_{#1|#2}} % Φ_{\la} \newcommand{\Philt}[2][]{\widetilde{Φ}_{#1|#2}} % Φ_{\la} \newcommand{\Philhat}[2][]{\hat{Φ}_{#1|#2}} % Φ_{\la} \newcommand{\Philsaz}{Φ_{\smash{{}^{*}_a},z}} % Φ_{\lasz} \newcommand{\Phileaz}{Φ_{\smash{{}^{ε}_a},z}} % Φ_{\laez} \newcommand{\Philseaz}{Φ_{\smash{{}^{*ε}_a},z}} % Φ_{\lasez} \newcommand{\mus}[1][1]{μ^{(#1)}_*} \newcommand{\musA}[1][1]{μ^{(#1)}_{\smash{{}^{\,*}_A}}} \newcommand{\SigsA}[1][1]{Σ^{(#1)}_{\smash{{}^{\,*}_A}}} \newcommand{\musB}[1][1]{μ^{(#1)}_{\smash{{}^{\,*}_B}}} \newcommand{\SigsB}[1][1]{Σ^{(#1)}_{\smash{{}^{\,*}_B}}} \newcommand{\musa}[1][1]{μ^{(#1)}_{\smash{{}^{*}_a}}} \newcommand{\Sigsa}[1][1]{Σ^{(#1)}_{\smash{{}^{*}_a}}} \newcommand{\Msah}{{\color{highlight-red}\mathcal{M}^{*}_a}} \newcommand{\Msazh}{{\color{highlight-red}\mathcal{M}^{*}_{a,z}}} \newcommand{\Meah}{{\color{highlight-blue}\mathcal{M}^{ε}_a}} \newcommand{\Meazh}{{\color{highlight-blue}\mathcal{M}^{ε}_{a,z}}} \newcommand{\lsazh}{{\color{highlight-red}l_{\smash{{}^{*}_a},z}}} \newcommand{\leazh}{{\color{highlight-blue}l_{\smash{{}^{ε}_a},z}}} \newcommand{\lseazh}{{\color{highlight-orange}l_{\smash{{}^{*ε}_a},z}}} \newcommand{\Philsazh}{{\color{highlight-red}Φ_{\smash{{}^{*}_a},z}}} % Φ_{\lasz} \newcommand{\Phileazh}{{\color{highlight-blue}Φ_{\smash{{}^{ε}_a},z}}} % Φ_{\laez} \newcommand{\Philseazh}{{\color{highlight-orange}Φ_{\smash{{}^{*ε}_a},z}}} % Φ_{\lasez} \newcommand{\emdstd}{\tilde{σ}} \DeclareMathOperator{\Mvar}{Mvar} \DeclareMathOperator{\AIC}{AIC} \DeclareMathOperator{\epll}{epll} \DeclareMathOperator{\elpd}{elpd} \DeclareMathOperator{\MDL}{MDL} \DeclareMathOperator{\comp}{COMP} \DeclareMathOperator{\Lognorm}{Lognorm} \DeclareMathOperator{\erf}{erf} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator{\Image}{Image} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\SE}{SE} % standard error \DeclareMathOperator{\Unif}{Unif} \DeclareMathOperator{\Poisson}{Poisson} \DeclareMathOperator{\SkewNormal}{SkewNormal} \DeclareMathOperator{\TruncNormal}{TruncNormal} \DeclareMathOperator{\Exponential}{Exponential} \DeclareMathOperator{\exGaussian}{exGaussian} \DeclareMathOperator{\IG}{IG} \DeclareMathOperator{\NIG}{NIG} \DeclareMathOperator{\Gammadist}{Gamma} \DeclareMathOperator{\Lognormal}{Lognormal} \DeclareMathOperator{\Beta}{Beta} \newcommand{\sinf}{{s_{\infty}}}\)

5.1. Transitivity of BEMD comparisons#

Given three independent continuous random variables \(R_A\), \(R_B\) and \(R_C\), define the probabilities

\[\begin{aligned} \underbrace{P(R_A < R_B)}_{\eqqcolon B_{AB}} && \underbrace{P(R_B < R_C)}_{\eqqcolon B_{BC}} && \underbrace{P(R_C < R_A)}_{\eqqcolon B_{CA}} \,. \end{aligned}\]

For some threshold \(\falsifythreshold\), we would like these to satisfy a transitivity relation of the form

(5.1)#\[\begin{split}\left. \begin{aligned} B_{AB} &> \falsifythreshold \\ B_{BC} &> \falsifythreshold \\ \end{aligned} \,\right\} \,\Rightarrow\, B_{CA} < \falsifythreshold \,,\end{split}\]

as this would reduce the required number of pairwise comparisons between models (see section Model discrepancy as a baseline for non-stationary replications, Table 2.1 and Eq. 2.13 in the main text).

It is known that Eq. 5.1 does not hold for \(\falsifythreshold = \tfrac{1}{2}\); classic counterexamples in this case are non-transitive dice [71]. However, the set of probabilities \(\mathcal{S} \coloneqq \{ B_{AB}, B_{BC}, B_{CA} \}\) does satisfy a property known as dice-transitivity [38, Theorem 19], from which one can derive that Eq. 5.1 holds when \(\falsifythreshold = \varphi^{-1}\), where \(\varphi\) is the golden ratio. This result appears as a comment below Theorem 3 in Baets and Meyer [39], but to our knowledge has otherwise remained unknown. We provide a short self-contained derivation below, for the convenience of the reader.

The definition of dice-transitivity is obtained by substituting equation (9) of De Schuymer et al. [38] into equation (6) of the same reference. For our purposes we are interested in the resulting upper bound

(5.2)#\[α - 1 \leq -βγ \,,\]

where \(α\), \(β\), and \(γ\) are respectively the lowest, middle and highest value of \(\mathcal{S}\). In other words, \(\{α,β,γ\} = \mathcal{S}\) and

(5.3)#\[α \leq β \leq γ \,.\]

Suppose that, as given in Eq. 2.13, we have

(5.4)#\[\begin{aligned} B_{AB} &> \varphi^{-1} & &\text{and} & B_{BC} &> \varphi^{-1} \,. \end{aligned}\]

We wish to use Eq. 5.2 to establish an upper bound on \(B_{CA}\). We do not know a priori how the probabilities are ordered, so we consider the six possible cases:

\[\begin{split}\begin{array}{ccc} B_{AB} & B_{BC} & B_{CA} \\ \hline α & β & γ \\ β & α & γ \\ α & γ & β \\ γ & α & β \\ β & γ & α \\ γ & β & α \\ \end{array}\end{split}\]
Cases \(αβγ\) and \(βαγ\)

The assumptions of Eq. 5.4 translate to \(α > \varphi^{-1}\) and \(β > \varphi^{-1}\). We seek a bound on \(γ\). Rearranging Eq. 5.2, we then have

\[γ \leq \frac{1 - α}{β} < \frac{1 - \varphi^{-1}}{\varphi^{-1}} = \frac{-1 + \sqrt{5}}{2} = \varphi^{-1} \,,\]

which contradicts Eq. 5.3.

Cases \(αγβ\) and \(γαβ\)

The argument is exactly analogous, except that we seek a bound on \(β\). We get

\[β \leq \frac{1 - α}{γ} < \frac{1 - \varphi^{-1}}{\varphi^{-1}} = \varphi^{-1} \,,\]

which again contradicts Eq. 5.3.

Therefore the only possible cases are \(βγα\) and \(γβα\), which means that \(B_{CA}\) must be the smallest of the three probabilities. These two final cases provide the upper bound on \(B_{CA}\):

Cases \(βγα\) and \(γβα\)

We seek a bound on \(α\). Rearranging Eq. 5.2 one more time yields

(5.5)#\[α \leq 1 - βγ < 1 - \varphi^{-2} = \varphi^{-1} \,.\]

Thus Eq. 5.1 holds for \(\falsifythreshold = \varphi^{-1}\). More generally, we have \(α = B_{CA}\) whenever both \(B_{AB}\) and \(B_{BC}\) are greater than \(\varphi^{-1}\). In this case Eq. 5.5 implies

\[B_{AC} = 1 - B_{CA} > 1 - (1 - B_{AB}B_{BC}) = B_{AB}B_{BC} \,,\]

and therefore

(5.6)#\[\begin{split}\left. \begin{aligned} B_{AB} &> \varphi^{-1} \\ B_{BC} &> \varphi^{-1} \\ \end{aligned} \,\right\} \,\Rightarrow\, B_{AC} > B_{AB}B_{BC} \,.\end{split}\]

Eq. 2.13 which we gave in the main text is a special case of Eq. 5.6.